

ETA Approved Drop In

Product Information

Approved deformation controlled anchor available in zinc plated and clear passivated finish and A4/316 stainless steel. Suitable for use in cracked and non-cracked concrete between C20/25 & C50/60.

Features

1. Internal thread suitable for bolt or threaded stud

2. Permanent socket to allow removal and replacement of fixture

3. Tested to ETAG 001 Part 6, multiple use for non-structural applications and ETAG 001-4

				Ra	nge Dat	а			
Part Number	Thread Diam	Anchor Length	Hole Diam	Fixture Clearance Hole	Internal Thread Length	Embedment Depth	Minimum Hole Depth	Minimum Structure Thickness	Maximum Installation Torque
mm	mm	mm	mm	mm	mm	mm	mm	mm	Nm
Zinc Plated									
ADBM08	8	30	10	9	13	30	30	100	8
ADBM10	10	40	12	12	15	40	40	130	15
ADBM12	12	50	15	14	18	50	50	140	35
ADBM16	16	65	20	18	23	65	65	160	60
Stainless Ste	el								
DSSM06	6	30	8	7	13	30	30	100	4
DSSM08	8	30	10	9	13	30	30	100	8
DSSM10	10	40	12	12	15	40	40	130	15
DSSM12	12	50	15	14	18	50	50	140	35
DSSM16	16	65	20	18	23	65	65	160	60

Drill correct diameter hole to correct depth

Clean hole by brushing and blowing to remove all dust and drilling debris

Insert anchor into concrete and hammer wedge home using correct setting punch

Tighten with torque wrench to recommended torque

Cracked and Non-cracked concrete (Multiple use for non-structural applications)

	Performance Data (C20/25 Concrete)									
Thread Diam	Characteristic Resistance	Design Resistance (γ _{Ms} frpm ETA)	Approved Resistance (γ_F =1.4)	Spacing	Edge Distance					
mm	kN	kN	kN	mm	mm					
	Load in any direction	Load in any direction	Load in any direction	Tensile & Shear	Tensile & Shear					
8	5.0	2.31	1.65	90	95					
10	6.0	2.77	1.92	120	135					
12	6.0	3.33	2.37	150	165					
16	16.0	8.88	6.34	195	200					

Non-Cracked concrete

	Performance Data (C20/25 Concrete)									
Thread Diam	Charac Resis	teristic tance	Design Resistance (γ _{Ms} frpm ETA)		Approved Resistance(γ _F =1.4)		Spacing	Edge D	istance	
mm	kl	N	kN kN		mm		m			
	Tensile	Shear	Tensile	Shear	Tensile	Shear	Tensile & Shear	Tensile	Shear	
6 ⁽¹⁾	8.3	4.0	5.5	2.39	3.9	1.70	90	80	95	
8(1)	8.3	7.3	5.5	4.37	3.9	3.12	90	95	95	
10	12.7	9.6	8.5	5.75	6.0	4.10	120	135	135	
12	17.8	16.8	11.9	10.06	8.5	7.18	150	165	165	
16	26.4	31.3	17.6	18.74	12.5	13.38	195	200	200	

(1) Use restricted to anchoring of structural components statically indeterminate.

For variations in structure thickness, reduced spacing and edge calculations download the free Anchor Calculation Program from www.jcpfixings.co.uk

JCP Construction Products, Unit 14 Teddington Business Park, Station Rd, Teddington, Middlesex TW11 9BQ Telephone 020 8943 1800 email:- jcpenquiries@owlett-jaton.com Web:- www.jcpfixings.co.uk

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

ETA-18/0213

of 17 May 2018

JCP Drop In Anchor ADB / DSS

Deformation-controlled expansion anchor for multiple use for non-structural applications in concrete

Hexstone Ltd. T/A JCP Construction Products Opal Way Stone Business Park, Stone Staffordshire ST 15 0SW . GROSSBRITANNIEN

Plant 2, Germany

20 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 6: "Anchors for multiple use for nonstructural applications", January 2011, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0213 English translation prepared by DIBt

Page 2 of 20 | 17 May 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 17 May 2018

Specific Part

1 Technical description of the product

The JCP Drop In Anchor ADB / DSS is an anchor made of zinc-plated steel, of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding Mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C 4 to C 5		

3.3 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic values for static and quasi- static actions	See Annex C 1 to C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, January 2011 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

Page 4 of 20 | 17 May 2018

European Technical Assessment ETA-18/0213 English translation prepared by DIBt

5

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 17 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

JCP Drop In Anchor ADB / DSS Product description			Annex A1
M1665SH (ES M16x65)		M1665 (E M16x65)	
M1250SH (ES M12x50)		M1250 (E M12x50)	
M1040SH (ES M10x40)		M1040 (E M10x40)	
M1030SH (ES M10x30) (zinc plated only)	\bigoplus		
M0840SH (ES M8x40)	•	M0840 (E M8x40)	
M0830SH (ES M8x30)		M0830 (E M8x30)	
M0630SH (ES M6x30)	\oplus	M0630 (E M6x30)	•
CP Drop In Anchor ADB (zinc pla nchorage depth h _{ef} ≥ 30 mm	nted), DSS (A4	I) and DSS HCR (HCR)	
(ES M12x25)			
M1225SH	*		
M1025SH			
M0825SH (ES M8x25)	\bigcirc		
M0625SH (ES M6x25)	\odot		
nchorage depth h _{ef} = 25 mm	ileu)		

Page 6 of European Technical Assessment ETA-18/0213 of 17 May 2018

English translation prepared by DIBt

Page 7 of European Technical Assessment ETA-18/0213 of 17 May 2018

English translation prepared by DIBt

Table A1: Designation and Material

	1.1.1.1.1.1.1	ADB	DSS	DSS HCR		
Part Designation		Steel, zinc plated	Stainless steel A4	High corrosion resistant steel HCR		
1	Anchor sleeve	Cold formed or machining steel, zinc plated, EN ISO 4042:1999	Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Property class 70 EN ISO 3506:2010	Stainless steel, 1.4529, 1.4565, EN 10088:2014, Property class 70 EN ISO 3506:2010		
2	Cone	Cold formed or machining steel	Stainless steel (e.g. 1.4401, 1. EN 10088:2014	.4404, 1.4571, 1.4362)		

Requirements on the fastening screw or the threaded rod and nut according to the engineering documents:

- Minimum screw-in depth L_{sdmin} see Table B1 and B2
- The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum screw-in depth) and the minimum screw-in depth L_{sdmin}.
- A₅ > 8 % Ductility

Steel, zinc plated

Property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012

Stainless steel A4

- Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088:2014
- Property class 70 or 80 according to EN ISO 3506:2010

High corrosion resistant steel (HCR)

- Material 1.4529; 1.4565, according to EN 10088:2014
- Property class 70 or 80 according to EN ISO 3506:2010

Page 8 of European Technical Assessment ETA-18/0213 of 17 May 2018

English translation prepared by DIBt

Dimensions in mm

JCP Drop In Anchor ADB / DSS

Product description

Dimensions and marking

Annex A4

JCP Drop In Anchor ADB / DSS

Product description

Setting tools, dimensions and marking

Dimensions in mm

Annex A5

Specifications of intended use									
Drop In Anchor									
Anchorage depth h _{ef} ≥ 30 mm	M0630 M0630SH	M0630 M0630SH M0830 M0830SH M0840 M0840SH M1030SH M1040 M1040SH M1250 M1250SH M166							
Steel, zinc plated				\checkmark					
Stainless steel A4 and high corrosion resistant steel HCR Static and quasi-static loads		~		-		~			
Fire exposure				✓					
Cracked and uncracked concrete				✓					
Solid concrete C20/25 to C50/60				✓					
Anchorage depth h _{ef} = 25 mm	M0625SH	M0825SH	M1025SH	M1225SH					
Steel, zinc plated		,	(
Stainless steel A4 and high corrosion resistant steel HCR			-						
Static and quasi-static loads		v	/						
Fire exposure (solid concrete, C20/25 to C50/60)		,	(
Cracked and uncracked concrete		•	(
Solid concrete C12/15 to C50/60		•	/						
Precast pre-stressed hollow core slabs (C30/37 to C50/60)	\checkmark								
Base materials:									
 reinforced or u 	inreinforced r	normal weigh	t concrete ac	cording to EN	206-1:2000				
Use conditions:									
 Structures sub (zinc plated str 	oject to dry int eel, stainless	ernal conditions steel or high	ons corrosion re	sistant steel).					

- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

JCP Drop In Anchor ADB / DSS

Intended use Specifications Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Anchorages under static or quasi-static actions for multiple use for non-structural applications are designed in accordance with:
 - ETAG 001, Annex C, design method B, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method B
- Anchorages under static or quasi-static actions for precast pre-stressed hollow core slabs:
 - ETAG 001, Annex C, design method C, Edition August 2010.
 - CEN/TS 1992-4:2009, design method C
- Anchorages under fire exposure are designed in accordance with:
 - ETAG 001, Annex C, design method B, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools,
- Drill hole by hammer drilling only (use of vacuum drill bits is admissible),
- · Positioning of the drill holes without damaging the reinforcement.

JCP Drop In Anchor ADB / DSS

Intended use Specifications Annex B2

Table B1: Installation parameters for $h_{ef} \ge 30 \text{ mm}$									
Anchor size			M0630 (SH)	M0830 (SH)	M0840 (SH)	M1030SH	M1040 (SH)	M1250 (SH)	M1665 (SH)
Depth of drill hole	h ₀ =	[mm]	30	30	40	30	40	50	65
Drill hole diameter	d ₀ =	[mm]	8	10	10	12	12	15	20
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	20,55
Max. recommended installation torque	T _{inst} ≤	[Nm]	4	8	8	15	15	35	60
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	9	12	12	14	18
Available thread length	L _{th}	[mm]	13	13	20	12	15	18	23
Minimum screw-in depth	L_{sdmin}	[mm]	7	9	9	10	11	13	18
Steel, zinc plated									
Minimum thickness of member	h _{min}	[mm]	100	100	100	120	120	130	160
Minimum spacing	S _{min}	[mm]	55	60	80	100	100	120	150
Minimum distance	C _{min}	[mm]	95	95	95	115	135	165	200
Stainless steel A4, HCR									
Minimum thickness of member	h _{min}	[mm]	100	100	100	-	130	140	160
Minimum spacing	S _{min}	[mm]	50	60	80	-	100	120	150
Minimum distance	C _{min}	[mm]	80	95	95	-	135	165	200

Table B2: Installation parameters for h_{ef} = 25 mm

Anchor size			M0625SH	M0825SH	M1025SH	M1225SH
Depth of drill hole	$h_0 =$	[mm]	25	25	25	25
Drill hole diameter	d ₀ =	[mm]	8	10	12	15
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	8,45	10,45	12,5	15,5
Max. recommended installation torque	T _{inst} ≤	[Nm]	4	8	15	35
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14
Available thread length	L _{th}	[mm]	12	12	12	12
Minimum screw-in depth	L_{sdmin}	[mm]	6	8	10	12
Minimum thickness of member	h _{min,1}	[mm]	80			
Minimum spacing	S _{min}	[mm]	30	70	70	100
Minimum edge distance	C _{min}	[mm]	60	100	100	130
Standard thickness of member	h _{min,2}	[mm]		10	00	
Minimum spacing	S _{min}	[mm]	30	50	60	100
Minimum edge distance	C _{min}	[mm]	60	100	100	110
Installation in precast pre-stressed hollow	core slab	s C30/3	7 to C50/60			
Spacing	S _{min}	[mm]		20	00	
Edge distance	C _{min}	[mm]		15	50	

JCP Drop In Anchor ADB / DSS

Intended use

Installation parameters

Annex B3

Installation	instructions for solid c	oncrete slabs			
1		Drill hole perpendicular to concrete surface. V using vacuum drill bit proceed with step 3.	Vhen		
2	Contraction of the second seco	Blow out dust. Alternatively vacuum-clean doubottom of the hole.	wn to the		
3		Drive in anchor.			
4		Drive in cone by using setting tool.			
5		Shoulder of setting tool must fit on anchor rim			
6		Apply installation torque T _{inst} by using calibrat wrench.	ed torque		
JCP Drop I	n Anchor ADB / DSS				
Intended use Installation ins	Intended use Installation instructions for solid concrete slabs				

Г

nstallation	instructions for preca	ast pre-stressed hollow core slabs
1		Search for the position of the reinforcement.
2		Mark the position of the reinforcement and search for the other position of the reinforcement
3		Mark the positions of reinforcement.
4	250mm 220mm	Drill hole while maintaining the required distances.
5		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
6		Drive in anchor.
7		Drive in cone by using setting tool.
8		Shoulder of setting tool must fit on anchor rim.
9		Apply installation torque T _{inst} by using calibrated torque wrench.
CP Drop I	n Anchor ADB / DSS	
tended use		Annex Be

Installation instructions for precast pre-stressed hollow core slabs

Anchor size			M0630	M0830	M0840	M1030	M1040	M1250	M1665	
Load in any direction	(31)	(31)	(31)	эп	(31)	(31)	(31)			
Characteristic resistance in										
concrete C20/25 to C50/60	F [∪] _{Rk}	[kN]	3	5	6	6	6	6	16	
Partial safety factor	γм	[-]	1,8	2,	16	2,1	2,16	1,8	1,8	
Spacing	S _{cr}	[mm]	130	180	210	230	170	170	400	
Edge distance	C _{cr}	[mm]	65	90	105	115	85	85	200	
Shear load with lever arm, Stee	el zinc plate	ed								
Characteristic resistance (Steel 4.6)	M ⁰ _{Rk,s} ¹⁾	[Nm]	6,1	15	15	30	30	52	133	
Partial safety factor	γ_{Ms}	[-]				1,67				
Characteristic resistance (Steel 4.8)	M ⁰ _{Rk,s} ¹⁾	[Nm]	6,1	15	15	30	30	52	133	
Partial safety factor	γ_{Ms}	[-]				1,25				
Characteristic resistance (Steel 5.6)	$M^0_{Rk,s}$ ¹⁾	[Nm]	7,6	19	19	37	37	65	166	
Partial safety factor	γ_{Ms}	[-]		1,67						
Characteristic resistance (Steel 5.8)	M ⁰ _{Rk,s} ¹⁾	[Nm]	7,6	19	19	37	37	65	166	
Partial safety factor	γ_{Ms}	[-]				1,25				
Characteristic resistance (Steel 8.8)	$M^0_{\ Rk,s}{}^{1)}$	[Nm]	12	30	30	59	60	105	266	
Partial safety factor	γ_{Ms}	[-]				1,25				
Shear load with lever arm, Stainless steel A4 / HCR										
Characteristic resistance (Property class 70)	M ⁰ _{Rk,s} ¹⁾	[Nm]	11	26	26	-	52	92	233	
Partial safety factor	γ_{Ms}	[-]	1,56							
Characteristic resistance (Property class 80)	M ⁰ _{Rk,s} ¹⁾	[Nm]	12	30	30	-	60	105	266	
Partial safety factor	γ_{Ms}	[-]				1,33				

¹⁾ Characteristic bending moment M⁰_{RKs} for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

JCP Drop In Anchor ADB / DSS

Performance

Characteristic resistance for $h_{ef} \geq 30 \ mm$ in solid concrete

Table C2: Characteristic resistance for hef = 25 mm in solid concrete slabs

Anchor size			M0625SH	M0825SH	M1025SH	M1225SH	
Load in any direction							
Characteristic resistance in concrete C12/15 and C16/20	$F^0_{\ Rk}$	[kN]	2,5	2,5	3,5	3,5	
Characteristic resistance in concrete C20/25 to C50/60	F ⁰ _{Rk}	[kN]	3,5	4,0	4,5	4,5	
Partial safety factor	γм	[-]		1,5			
Spacing	S _{cr}	[mm]	75	75	75	75	
Edge distance c _{cr} [n		[mm]	38	38	38	38	
Shear load with lever arm							
Characteristic resistance (Steel 4.6)	M ⁰ _{Rk,s} ¹⁾	[Nm]	6,1	15	30	52	
Partial safety factor	γ _{Ms}	[-]	1,67				
Characteristic resistance (Steel 4.8)	haracteristic resistance $M^{0}_{Rk,s}^{1}$ [Nm]		6,1	15	30	52	
Partial safety factor	γ _{Ms}	[-]	1,25				
Characteristic resistance $M^0_{Rk,s}^{(1)}$ [N		[Nm]	7,6	19	37	65	
Partial safety factor	γ_{Ms}	[-]	1,67				
Characteristic resistance M ⁰ _{Rk,s} ¹⁾		[Nm]	7,6	19	37	65	
Partial safety factor	γ _{Ms}	[-]	1,25				
Characteristic resistance (Steel 8.8)	ic resistance M ⁰ _{Rk,s} ¹⁾ [Nm]		12	30	60	105	
Partial safety factor	1,25						

¹⁾ Characteristic bending moment M⁰_{RKs} for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

JCP Drop In Anchor ADB / DSS

Performance Characteristic resistance for h_{ef} = 25 mm in solid concrete

Table C3: Characteristic resis slabs	stance fo	or h_{ef} =	25 mm in p	recast pre-	stressed ho	ollow core		
Anchor size			M0625SH	M0825SH	M1025SH	M1225SH		
Load in any direction					1			
Flange thickness	d _b	[mm]		≥ 35	(30) ¹⁾			
Characteristic resistance in precast pre-stressed hollow core slabs C30/37 to C50/60	F _{Rk}	[kN]	3,5 4,0		4,5	4,5		
Partial safety factor	γм	[-]		1,5	;			
Spacing	S _{cr}	[mm]	200					
Edge distance	[mm]	150						
Shear load with lever arm								
Characteristic resistance (Steel 4.6)	$M^0_{Rk,s}^{2)}$	[Nm]	6,1	15	30	52		
Partial safety factor	γ_{Ms}	[-]	1,67					
Characteristic resistance (Steel 4.8)	M ⁰ _{Rk,s} ²⁾	[Nm]	6,1	15	30	52		
Partial safety factor	γ_{Ms}	[-]	1,25					
Characteristic resistance (Steel 5.6)	$M^0_{\rm Rk,s}{}^{2)}$	[Nm]	7,6	19	37	65		
Partial safety factor	γ_{Ms}	[-]	1,67					
Characteristic resistance (Steel 5.8)	M ⁰ _{Rk,s} ²⁾	[Nm]	7,6	19	37	65		
Partial safety factor	γ_{Ms}	[-]	1,25					
Characteristic resistance (Steel 8.8)	M ⁰ _{Rk,s} ²⁾	[Nm]	12	30	60	105		
Partial safety factor	γ_{Ms}	[-]	1,25					

¹⁾ The anchor may be set in a flange thickness of 30 mm with identical characteristic loads, if the borehole cuts no hollow core.

²⁾ Characteristic bending moment M⁰_{Rk,s} for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

JCP Drop In Anchor ADB / DSS

Performance

Characteristic resistance for h_{ef} = 25 mm in precast pre-stressed hollow core slabs

Table C4:Characteristic values under fire exposure in solid concrete slabs C20/25 to
C50/60 for $h_{ef} \ge 30 \text{ mm}$

Anchor size					M0630 (SH)	M0830 (SH)	M0840 (SH)	M1030 SH	M1040 (SH)	M1250 (SH)	M1665 (SH)
Fire resis- tance class Load in any direction											
Steel 4.6	R 30			[kN]	0,4	0,6	0,6	0,9	0,9	1,5	3,1
	R 60	Characteristic	F ⁰ _{Rk,fi}	[kN]	0,35	0,6	0,6	0,8	0,8	1,3	2,4
	R 90	resistance		[kN]	0,30	0,6	0,6	0,6	0,6	1,1	2,0
	R 120			[kN]	0,25	0,5	0,5	0,5	0,5	0,8	1,6
	R 30			[kN]	0,4	0,9	1,1	0,9	1,5	1,5	4,0
Steel	R 60	Characteristic	- 0	[kN]	0,35	0,9	0,9	0,9	1,5	1,5	4,0
4.8	R 90	resistance	F [∼] Rk,fi	[kN]	0,3	0,6	0,6	0,9	1,1	1,5	3,0
	R 120			[kN]	0,3	0,5	0,5	0,7	0,9	1,2	2,4
	R 30			[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
Steel	R 60	Characteristic	- 0	[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
≥ 5.6	R 90	resistance	F [™] Rk,fi	[kN]	0,4	0,9	0,9	0,9	1,5	1,5	3,7
	R 120			[kN]	0,3	0,5	0,5	0,7	1,0	1,2	2,4
	R 30			[kN]	0,8	0,9	1,5	-	1,5	1,5	4,0
A4 / HCR	R 60	Characteristic	$F^0_{Rk,fi}$	[kN]	0,8	0,9	1,5	-	1,5	1,5	4,0
	R 90	resistance		[kN]	0,4	0,9	0,9	-	1,5	1,5	3,7
	R 120	7		[kN]	0,3	0,5	0,5	-	1,0	1,2	2,4
		Partial safety factor	ŶM,fi	[-]	1,0						
Steel z	inc plate	ed									
		Spacing	S _{cr,fi}	[mm]	130	180	210	170	170	200	400
R 30 -	- R 120	Edge distance	C _{cr,fi}	[mm]	65	90	105	85	85	100	200
		If the fire attack is from	m more	than on	e side, tl	ne edge (distance	shall be	≥ 300 mr	n.	
Stainle	ess steel	A4, HCR									
		Spacing	S _{cr,fi}	[mm]	130	180	210	-	170	200	400
R 30 -	- R 120	Edge distance	C _{cr,fi}	[mm]	65	90	105	-	85	100	200
		If the fire attack is from	m more	than on	e side, tl	ne edge (distance	shall be	≥ 300 mr	n.	

JCP Drop In Anchor ADB / DSS

Performance

Characteristic values under fire exposure for $h_{\text{ef}} \geq 30 \text{ mm}$

Table C5: Characteristic values under fire exposure in solid concrete slabs C20/25 to C50/60 for h_{ef} = 25 mm

Anchor size					M0625SH	M0825SH	M1025SH	M1225SH	
Fire resis- tance class Load in any direction									
	R 30		$F^0_{Rk,fi}$	[kN]	0,4	0,6	0,6	0,6	
Steel ≥ 4.6	R 60	Characteristic		[kN]	0,35	0,6	0,6	0,6	
	R 90	resistance		[kN]	0,30	0,6	0,6	0,6	
	R 120]		[kN]	0,25	0,5	0,5	0,5	
Partial safety factor y _{M,fi} [-]				[-]	1,0				
		Spacing	S _{cr,fi}	[mm]	100	100	100	100	
R 30 – R 120		Edge distance	C _{cr,fi}	[mm]	50	50	50	50	
		If the fire attack is from more than one side, the edge distance shall be \geq 300 mm.							

JCP Drop In Anchor ADB / DSS

Performance

Annex C5

Characteristic values under fire exposure for h_{ef} = 25 mm