www.fastenersfixingsandtools.co.uk Tel.01234 333949 Email : info@fasteners-ft.co.uk Fax.01234 211069

Throughbolt S.S. A4-316

Specification

Product Information

A Grade A4-316 Stainless Steel, torque controlled through fixing suitable for use in noncracked concrete range between C20/25 & C50/60.

Features

Through Fixing Medium to heavy duty loads Torque controlled expansion Supplied pre-assembled for rapid installation

				F	ange Data								
				Max. Fix. Thickness		Min Embed	ment Depth	Minimum Hole Depth					
Part Number	Anchor Diam & Length	Hole Diam	Fixture Clearance Hole	Standard Embedment	Reduced Embedment	Standard Embedment	Reduced Embedment	Standard Embedment	Reduced Embedment				
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm				
TSS06040	6x40	e	7	-	5	-	27	-	35				
TSS06065	6x67	0	1	10	20	49	39	55	45				
TSS08050	8x50			-	5	-	35	-	45				
TSS08075	8x75 8x95	8	0	10	19								
TSS08095			9	30	39	56	47	65	55				
TSS08120	8x120			55	64								
TSS10060	10x60			-	10	-	40	-	50				
TSS10080	10x85	5 05 10 25	10x85 10x105 10			0x85		10	16				
TSS10100	10x105 10 10x125			12	30	36	62	56	70	65			
TSS10125				50	56	02	00	10	00				
TSS10175	10x175			100	106								
TSS12085	12x95			-	14								
TSS12100	12x105			10	25								
TSS12115	12x115	12	14	20	35	81	66	90	75				
TSS12145	12x145			50	65								
TSS12200	12x200			105	120								
TSS16110	16x115			-	14								
TSS16125	16x130	40	40	10	26	00	00	110	05				
TSS16150	16x150	10	18	30	46	99	83	110	90				
TSS16175	16x180			60	76								
TSS20170	20x180	20	20	35	57	4.04	00	100	110				
TSS20220	20v240	20 22		95	117	121	99	130	110				

Installation Instructions

Position fixture and drill correct diameter hole to correct depth

Clean hole by brushing and blowing to remove all dust and drilling debris

Insert assembled anchor through fixture into concrete Tighten with torque wrench to recommended torque

0

Throughbolt S.S. A4-316

Standard Embedment

	Performance Data (20/25 Non-Cracked Concrete)										
Thread Diam	Minimum Structure Thickness	Characteristic Resistance		Design Resistance		Recomn Resist	Recommended Resistance		Design Edge Distance		Tight. Torque
mm	mm	k١	١	k١	١	kN		mm	mm		Nm
		Tensile	Shear	Tensile	Shear	Tensile	Shear	Tensile & Shear	Tensile	Shear	
6 ⁽¹⁾	100	7.5	7.0	4.8	5.6	3.6	3.9	35	35	65	6
8 ⁽¹⁾	100	12.0	12.0	7.9	9.6	5.7	6.8	85	85	105	15
10	100	16.0	16.7	10.6	11.1	7.4	8.0	130	115	120	25
12	135	25.0	27.0	16.6	21.5	11.9	15.4	175	155	195	50
16	170	36.0	50.0	24.0	39.9	17.1	28.6	240	195	325	100
20	200	50.5	86.0	33.5	61.4	23.9	43.9	300	275	445	160

Shear Loads towards a free edge are for single anchors where Spacing \geq 3 x Edge Distance

Reduced Embedment

	Performance Data (20/25 Non-Cracked Concrete)										
Thread Diam	Minimum Structure Thickness	Characteristic Resistance		Design Resistance		Recommended Resistance		Design Spacing	Design Edge Distance		Tight. Torque
mm	mm	k١	١	k١	١	kN		mm	mm		Nm
		Tensile	Shear	Tensile	Shear	Tensile	Shear	Tensile & Shear	Tensile	Shear	
6 ⁽¹⁾	80	6.0	8.3	3.8	5.5	2.7	3.9	35	55	65	6
8 ⁽¹⁾	80	9.0	10.4	5.9	6.9	4.3	4.3	75	85	85	15
10	100	12.0	13.7	7.9	9.1	5.7	6.5	95	95	95	25
12	105	17.8	17.8	11.9	11.9	8.5	8.5	150	145	120	50
16	130	25.8	51.7	17.2	34.4	12.3	24.5	195	160	330	100
20	160	34.7	69.5	23.1	46.3	16.5	33.0	235	200	385	160

Shear Loads towards a free edge are for single anchors where Spacing $\ge 3 \times Edge$ Distance (1) use restricted to anchorages of indeterminate structural components

For variations in structure thickness, reduced spacing and edge calculations download the free Anchor Calculation Program from www.jcpfixings.co.uk

Influence of concrete strength

Concrete strength	C20/25	C25/30	C30/37	C40/50	C45/55	C50/60	
Cylinder	N/mm ²	20	25	30	40	45	50
Cube	N/mm ²	25	30	37	50	55	60
Factor		1.0	1.1	1.22	1.41	1.48	1.55

JCP Construction Products, Unit 14 Teddington Business Park, Station Rd, Teddington, Middlesex TW119BQ Tel:- 020 8943 1800 Web:- www.jcpfixings.co.uk

Declaration of Performance No. 0756-CPR-0216

Throughbolt (Torque controlled expansion anchor made of stainless steel) JCP Construction Products, Unit 14 Teddington Business Park, Station Rd, Teddington, Middlesex TW11 9BQ Telephone +44 (0)208 943 1800

Intended use	or uses of the products according to EAD 330232-00-0601		r.						
Generic type			Torque controlled expansion anchor						
Base material			Non-cracked concrete C20/25 to C50/60 acc. EN 206-2:2003						
Batch Numbe	r		Marked on individual boxes						
Material			Stainless steel, 1.4401, 1.4404. 1.4571, 1.4578, 1.4362 to EN 10088						
Durability			Dry internal conditions						
			Internal and	l external ati	mospheric e	xposure incl	uding indust	rial and mari	ne
			environmen	it, or exposu	re in permer	nantiy damp	internal con	ditions, if no	particularly
					AISL.				
Loading			Static, quas	i-static					
			-						
ETA 07/0332	issued by		DIBt						
On the basis of	of		EAD 33023	2-00-0601					
Certificate of (Conformity 1343-CPR-M 556-1/07.15 issued by		MPA Darms	stadt					
Under system			1						
_									
Declared perf	ormances according to EAD 330232-00-0601		_						
Essential Cha	racteristics					Performance	е		
			M6	M8	M10	M12	M16	M20	
Installation pa	rameters								
d _o	Nominal diameter of drill bit	[mm]	6	8	10	12	16	20	
d _f	Fixture clearance hole	[mm]	7	9	12	14	18	22	
h _{ef}	Effective anchorage depth	[mm]	40	44	48	65	80	100	
h ₁	Depth of drill hole to deepest point	[mm]	55	65	70	90	110	130	
h _{min}	Minimum thickness of concrete member	[mm]	100	100	100	130	160	200	
T _{inst}	Nominal torque moment	[mm]	6	15	25	50	100	160	
Non-Cracked	I concrete								
S _{min}	Minimum spacing	[mm]	35	35	45	60	80	100	
for C≥	Edge distance	[mm]	40	65	70	100	120	150	
C _{min}	Minimum edged distance	[mm]	35	45	55	70	80	100	
for S≥	Anchor spacing	[mm]	60	110	80	100	140	180	
Tensile Steel	failure mode								
N _{Rk,s}	Characteristic tensile steel failure	[kN]	10	18	30	44	88	134	
γM,s	Partial safety factor	[-]			1.50			1.68	
Pull Out and S	Splitting for standard thickness of concrete member (The highest resis	stance of Ca	se 1 and Ca	se 2 may be	e used)				
Case 1					-	-	-	-	-
N°Rk,sp	Characteristic Resistance in C20/25 non-cracked concrete	[kN]	6	9	12	20	30	40	
S _{cr,sp}	Critical spacing (Splitting)	[mm]	120	132	144	195	240	300	
C _{cr,sp}	Critical edge distance (Splitting)	[mm]	60	66	72	98	120	150	
Case 2			-						
N°Rk,sp	Characteristic Resistance in C20/25 concrete	[kN]	7.5	12	16	25	(1)	(1)	
S _{cr,sp}	Critical spacing (Splitting)	[mm]	160	220	240	340	410	560	
C _{cr,sp}	Critical edge distance (Splitting)	[mm]	80	110	120	170	205	280	
Concrete cone	e failure								
h _{ef}	Effective anchorage depth	[mm]	40	44	48	65	80	100	
S _{cr,N}	Critical spacing	[mm]	120	132	144	195	240	300	
C _{cr,N}	Critical edge distance	[mm]	60	66	72	97.5	120	150	
Yc	Concrete strength increasing factor	[-]			$(f_{ck.cube})$	/ 25)^ ^{0.5}			

Displacem	ent under tensile loading								
Nu _{cr}	Service tensile loads in uncracked concrete	[kN]	3.6	5.7	7.6	11.9	17.2	24.0	
$\delta N0, u_{cr}$	Short term displacement under tensile loads	[mm]	0.7	0.9	0.5	0.6	0.9	2.1	
δN∞, _{ucr}	Long term displacement under tensile loads	[mm]			0.8			4.2	
Shear stee	el failure								
V, _{Rk,s}	Characteristic shear steel failure without lever arm	[kN]	7	12	19	27	50	86	
M ⁰ _{Rk,s}	Characteristic shear steel failure with lever arm	[Nm]	10	24	49	85	199	454	
γm,sV	Partial safety factor	[-]	1.25						
Concrete p	bryout failure								
k	Factor in equation 95.6) ETAG 001 Annex C §5.2.3.3	[-]	1.0	1.0	1.0	2.0	2.0	2.0	
үМ,ср	Partial safety factor	[-]			1	.5			
Shear con	crete edge failure								
l _{ef}	Effective anchorage length	[mm]	40	44	48	65	80	100	
Displacem	ent on shear load								
V	Service shear load in cracked and non-cracked concrete	[kN]	4.0	6.9	10.9	15.4	28.6	43.7	
δ_{v0}	Short term displacement under shear load	[mm]	1.1	2.0	1.2	2.0	2.2	2.1	
δV∞	Long term displacement under shear load	[mm]	1.7	3.0	1.8	3.0	3.3	3.2	

(1) Not decisive

The previous performance data relates to the following product codes

d	Marking d _o /L	L [mm]	t _{fix} [mm]	Product Code
6	B M6/10 A4	67	10	TSS06065
	B M8/10 A4	75	10	TSS08075
8	B M8/30 A4	95	30	TSS08095
	B M8/55 A4	120	55	TSS08120
	B M10/10 A4	85	10	TSS10080
10	B M10/30 A4	105	30	TSS10100
10	B M10/50 A4	125	50	TSS10125
	B M10/100 A4	175	100	TSS10175
	B M12/10 A4	105	10	TSS12100
12	B M12/20 A4	115	20	TSS12115
12	B M12/50 A4	145	50	TSS12145
	B M12/105 A4	120 33 14 85 10 14 105 30 14 105 30 14 105 50 14 125 50 14 105 10 14 105 10 14 105 10 14 105 50 14 105 10 14 145 50 14 130 10 14 150 30 14 150 30 74 180 60	105	TSS12200
	B M16/10 A4	130	10	TSS16125
16	B M16/30 A4	150	30	TSS16150
	B M16/60 A74	180	60	TSS16175
20	B M20/35 A4	180	35	TSS20170
20	B M20/95 A4	240	95	TSS20220

Ammendments						
(1) ETAG changed to EAD	03/11/2017					
(2) CPD changed to CPR	03/11/2017					
(3) Increase in concrete strength added	03/11/2017					

The performances of the product identified by the above product codes are in conformity with the declared performance This Declaration of performance is issued under the sole responsibility of JCP Construction products Signed for and on behalf of the manufacturers

Name and function	Place and date of issue	Signature
Brian Deluce	Teddington	AFAC
Technical Manager	03/11/2017	F. t. Velace

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-07/0332 of 30 January 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product JCP Throughbolt Product family Torque controlled expansion anchor for use in to which the construction product belongs non-cracked concrete Manufacturer JCP Construction Products Unit 14 Teddington Business Park Station Road TEDDINGTON, MIDDLESEX TW11 9BQ GROSSBRITANNIEN Manufacturing plant Plant2, Germany This European Technical Assessment 16 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque issued in accordance with Regulation (EU) controlled expansion anchors", April 2013, No 305/2011, on the basis of used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-07/0332 English translation prepared by DIBt

Page 2 of 16 | 30 January 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 16 | 30 January 2015

Specific Part

1 Technical description of the product

The JCP Throughbolt in the range of M6, M8, M10, M12, M16 and M20 is an anchor made of electroplated, hot dipped galvanised steel, stainless steel or high corrosions resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1 to C 3
Displacements under tension and shear loads	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

European Technical Assessment ETA-07/0332

Page 4 of 16 | 30 January 2015

English translation prepared by DIBt

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 30 January 2015 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider

Page 6 of European Technical Assessment ETA-07/0332 of 30 January 2015

English translation prepared by DIBt

Marking: e.g. <>15/21]
Ø d _k Marking: B Anchor identity M10 Anchor size	SW Marking of length

Marking of length	Α	В	С	D	Е	F	G	н	1	J	к	L	М
Length of anchor min \geq	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Marking of longth	N	0	в	0	P	6	т		V	14/	v	v	7
Marking of length	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
Marking of length Length of anchor min \geq	N 203,2	O 215,9	P 228,6	Q 241,3	R 254,0	S 279,4	T 304,8	U 330,2	V 355,6	W 381,0	X 406,4	Y 431,8	Z 457,2

Table A1: Dimensions, steel zinc plated

			Anchor	length L	Wrench
Anchor size Ød _k Ød _s		Standard anchorage depth	Reduced anchorage depth	size [SW]	
Steel electroplated	l and hot-dip	galvanised			
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17
M12	12	12 / 10,7 ¹⁾	t _{fix} + 97,3	t _{fix hef,red} + 82,3	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 121,0	t _{fix hef,red} + 103,0	24
M20	20	20 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30

¹⁾ cold formed version

Table A2: Material properties, steel zinc plated

			Material
Part	Designation	Steel, electroplated ≥ 5 μm acc. to EN ISO 4042:1999	Steel, hot-dip galvanised \ge 40 μ m, acc. to EN ISO 1461:2009
1	Conical bolt	Cold formed or machined steel	Cold formed or machined steel
2	Expansion sleeve	Steel, acc. to EN 10088:2005, material No. 1.4301 or 1.4303	Steel, acc. to EN 10088:2005, material No. 1.4301 or 1.4303
3	Washer	Steel	Steel
4	Hexagon nut	Property class 8 acc. to EN ISO 898-2:2012	Property class 8 acc. to EN ISO 898-2:2012

JCP Throughbolt

Product description

Anchor dimensions, marking and materials, steel zinc plated

Annex A2

Dimensions in mm

Page 7 of European Technical Assessment ETA-07/0332 of 30 January 2015

Ø d _i			Marking: Markin	anufactu aximum i fixture fo aximum i fixture fo ainless s ainless s ainless s anchor ide nchor ide	ring plar thickness or h_{ef} thickness or $h_{ef, red}$ steel A4 steel HC	s s d _s — ,			sw	(4) Mark of len	ing igth		
Marking of length	Α	В	С	D	Е	F	G	Н	1	J	к	L	м
Length of anchor min \geq	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
	1		70.0	00 0	101.6	1112	127 0	130 7	152 /	165 1	177 0	100 5	202.2
Length of anchor max <	50,8	63,5	76,2	00,9	101,0	114,5	127,0	133,7	152,4	105,1	177,0	190,5	203,2
Length of anchor max <	50,8	63,5	76,2	00,9	101,0	114,3	127,0	155,7	152,4	100,1	177,0	190,5	203,2

Tahla A3.	Dimonsions	etainlase	etaal	
Table AS:	Dimensions,	stanness	Sleer	

228,6

241,3

215,9

			Anchor	length L	Wrench
Anchor size	or size $\emptyset d_k \qquad \emptyset d_s$		Standard anchorage depth	Reduced anchorage depth	size [SW]
Stainless steel /	A4/HCR				
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10
M8	8	8 / 7,1 ¹⁾	t _{fix} + 66,4	t _{fix hef,red} + 57,4	13
M10	10	10 / 8,9 ¹⁾	t _{fix} + 74,0	t _{fix hef,red} + 68,0	17
M12	12	12 / 10,7 ¹⁾	t _{fix} + 96,5	t _{fix hef,red} + 81,5	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 117,8	t _{fix hef,red} + 101,8	24
M20	19,7	19,7 / 18,2 ¹⁾	t _{fix} + 142,7	t _{fix hef,red} + 120,7	30

279,4

304,8

330,2

355,6 381,0

406,4

431,8

457,2

Dimensions in mm

483,0

254,0

¹⁾ cold formed version

Length of anchor max <

Table A4: Designations and Materials, stainless steel A4/HCR

Part	Designation	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt	Stainless steel 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088:2005, coated	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated
2	Expansion sleeve	Stainless steel 1.4401, 1.4571, 1.4362,	EN 10088:2005
3	Washer	Stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005	High corrosion resistant steel 1.4529, 1.4565, EN 10088:2005
4	Hexagon nut	ISO 3506:2009, A4-70, stainless steel 1.4401, 1.4571, 1.4362, EN 10088:2005, coated	ISO 3506:2009, strength class 70, high corrosion resistant steel 1.4529, 1.4565, EN 10088:2005, coated

JCP Throughbolt

Product description

Anchor dimensions, marking and materials, stainless steel A4/HCR

Annex A3

Spe	Specifications of intended use									
JCI	P Throughbolt		M6	M8	M10	M12	M16	M20		
	Stool Tipo platod	electroplated	~	 ✓ 	✓	~	 ✓ 	✓		
ials		hot-dip galvanized	-	✓	✓	~	✓	✓		
ater	Stainless steel	A4	✓	✓	✓	~	✓	✓		
ž	High corrosion resistant steel	HCR	√	~	~	~	~	~		
Stat	tic or quasi-static actio	n				/	•			
Rec	luced anchorage dept	h	✓							
Non-cracked concrete										

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions
 (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A1 and A2 and the hexagon nut is placed at the end of the conical bolt as delivered by the manufacturer.

JCP Throughbolt

Intended use Specifications

.

- t - II - t' -l - t - .

English translation prepared by DIBt

D4

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20
Nominal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Installation torque (electroplated)	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque (hot-dip galvanised)	T _{inst} =	[Nm]	-	15	30	40	90	120
Diameter of clearance hole in the fixture	$d_{\rm f}$ \leq	[mm]	7	9	12	14	18	22
Standard anchorage depth								
Depth of drill hole	$h_1 \geq$	[mm]	55	65	70	90	110	130
Embedment depth	$h_{nom} \ge$	[mm]	49	56	62	82	102	121
Effective anchorage depth	$h_{ef} \ge$	[mm]	40	44	48	65	82	100
Reduced anchorage depth								
Depth of drill hole	$h_{1,red} \geq$	[mm]	45	55	65	75	95	110
Embedment depth	$h_{nom,red} \ge$	[mm]	39	47	56	67	84	99
Effective anchorage depth	$h_{\text{of rod}} >$	[mm]	30	35	42	50	64	78

JCP Throughbolt

Intended use

Annex B2

Installation data, steel zinc plated

Deutsches Institut für Bautechnik

Table B2: Installation data, stainless steel A4/HCR											
Anchor size				M8	M10	M12	M16	M20			
Nominal drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20			
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55			
Installation torque	T _{inst} =	[Nm]	6	15	25	50	100	160			
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	7	9	12	14	18	22			
Standard anchorage depth											
Depth of drill hole	$h_1 \geq$	[mm]	55	65	70	90	110	130			
Embedment depth	$h_{nom} \ge$	[mm]	49	56	62	81	99	121			
Effective anchorage depth	$h_{ef} \ge$	[mm]	40	44	48	65	80	100			
Reduced anchorage depth											
Depth of drill hole	$h_{1,red} \ge$	[mm]	45	55	65	75	95	110			
Embedment depth	$h_{\text{nom,red}} \ge$	[mm]	39	47	56	66	83	99			
Effective anchorage depth	$h_{ef,red} \ge$	[mm]	30	35	42	50	64	78			

JCP Throughbolt

Intended use Installation data, stainless steel A4/HCR

Table B3: Minimum spacings and edge distances, steel zinc plated

Anchor size			M6	M8	M10	M12	M16	M20
Standard anchorage depth h _{ef}								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	170	200
Minimum spacing	S _{min}	[mm]	35	40	55	75	90	105
Minimum edge distance	C _{min}	[mm]	40	45	65	90	105	125
Reduced anchorage depth h _{ef,red}								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	40	55	100	100	140
Minimum edge distance	C _{min}	[mm]	40	45	65	100	100	140

Table B4: Minimum spacings and edge distances, stainless steel A4/HCR

Anchor size			M6	M8	M10	M12	M16	M20
Standard anchorage depth h _{ef}								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	160	200
Minimum spacing	S _{min}	[mm]	35	35	45	60	80	100
	for $c \ge$	[mm]	40	65	70	100	120	150
Minimum edge distance	C _{min}	[mm]	35	45	55	70	80	100
	for $s \ge$	[mm]	60	110	80	100	140	180
Reduced anchorage depth h _{ef,red}								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	S _{min}	[mm]	35	60	55	100	110	140
Minimum edge distance	C _{min}	[mm]	40	60	65	100	110	140

Intermediate values by linear interpolation.

JCP Throughbolt

Intended use Minimum spacings and edge distances

Installation instructions	
1 90°	Drill hole perpendicular to concrete surface, positioning of the drill holes without damaging the reinforcement. In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
2	Blow out dust.
	Check position of nut.
	Drive in anchor, such that h_{ef} or $h_{ef,red}$ is met. This is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A2 and A3.
5 Tinst	Apply installation torque T _{inst} by using calibrated torque wrench.

JCP Throughbolt

Intended use Installation instructions

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20	
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0						
Steel failure									
Characteristic resistance	N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107	
Partial safety factor	γMs	[-]		. 1	,5		1	,6	
Pull-out		-					_		
Standard anchorage depth hef									
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	9	12	16	1)	1)	1)	
Reduced anchorage depth h _{ef,red}									
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	6 ²⁾	1) 2)	1)	1)	1)	1)	
Increasing factor for $N_{Rk,\rho}$	Ψc	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$						
Splitting									
Standard anchorage depth h _{ef}									
Spacing	S _{cr,sp}	[mm]	160	220	240	330	410	500	
Edge distance	C _{cr,sp}	[mm]	80	110	120	165	205	250	
Reduced anchorage depth hef,red									
Spacing	S _{cr,sp}	[mm]	180	210	230	240	320	400	
Edge distance	C _{cr,sp}	[mm]	90	105	115	120	160	200	
Concrete cone failure									
Standard anchorage depth hef									
Effective anchorage depth	$h_{ef} \geq$	[mm]	40	44	48	65	82	100	
Spacing	S _{cr,N}	[mm]			3	h _{ef}			
Edge distance	C _{cr,N}	[mm]			1,5	h _{ef}			
Reduced anchorage depth h _{ef,red}		1	-			1			
Effective anchorage depth	$h_{\text{ef,red}} \geq$	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
Spacing	S _{cr,N}	[mm]			3 h	ef,red			
Edge distance	C _{cr,N}	[mm]			1,5 I	lef,red			
Factor according to CEN/TS 1992-4	kucr	[-]			1(D,1			

JCP Throughbolt

Performance

Characteristic values for tension loads, steel zinc plated

Annex C1

Anchor size			M6	M8	M10	M12	M16	M20	
Installation safety factor	γ2 = γ _{inst}	[-]			. 1	,0			
Steel failure									
Characteristic resistance	Noka	[kN]	10	18	30	44	88	134	
Partial safety factor	NRK,S	[.]	10	10	1 50			1.68	
	<i>t</i> ivis	[]			1,00			1,00	
Pull-out									
Standard anchorage depth n _{ef}					1	1			
Characteristic resistance in	N _{Rk,p}	[kN]	7,5	12	16	25	1)	1)	
Reduced anchorage depth h									
Characteristic resistance in					1		0		
non-cracked concrete C20/25	N _{Rk,p}	[kN]	6 ²⁾	9 ²⁾	12	1)	1)	1)	
Splitting For the proof against splitting N	⁰ haa ta ha	nopleased							
Spinting For the proof against spinting N	_{Rk,c} has to be	replaced	DYN _{Rk,sp} .						
Standard anchorage depth nef									
The higher one of the decisive resistances	of Case 1 and	Case 2 is	s applicable.						
Case 1								-	
Characteristic resistance in	N ⁰ Diana	[kN]	6	a	12	20	30	40	
non-cracked concrete C20/25	RK,SP		<u> </u>	3		20			
Spacing	S _{cr,sp}	[mm]			3	h _{ef}			
Edge distance	C _{cr,sp}	[mm]			1,5	5 h _{ef}			
Case 2									
Characteristic resistance in	N ⁰ D	[kN]	75	12	16	25	1)	1)	
non-cracked concrete C20/25	IN Rk,sp		7,5	12	10	25			
Spacing	S _{cr,sp}	[mm]	160	220	240	340	410	560	
Edge distance	C _{cr,sp}	[mm]	80	110	120	170	205	280	
Reduced anchorage depth hef,red									
Characteristic resistance	N ⁰ D	[kN]]	6 ²⁾	a ²⁾	12	1)	1)	1)	
in non-cracked concrete C20/25	IN RK,sp		•		12				
Spacing	S _{cr,sp}	[mm]	180	210	230	300	320	400	
Edge distance	C _{cr,sp}	[mm]	90	105	115	150	160	200	
					(fer a	$(0,5)^{0,5}$			
increasing factor for N _{Rk,p} and N° _{Rk,sp}	Ψc	[-]			$\left(\frac{jc\kappa,c}{2}\right)$	5)			
Concrete cono failure									
Standard anchorage depth	la .	[[maxima]]	40	44	40	0.5	00	100	
Effective anchorage depth	n _{ef}	[mm]	40	44	48	b b	80	100	
Spacing Edge distance	S _{cr,N}		3 h _{ef}						
Poducod apohorago donth	C _{cr,N}				ۍ ا	Plief			
Effective ancherage depth	b	[mm]	20 ²⁾	25 ²⁾	42	50	64	79	
Spacing	llef,red		30	- 55	42	<u> </u>	04	/0	
Edge distance	CN	[mm]			1 4	<u>net</u> 5 h			
Easter appording to CEN/TS 1002 4	Cr,N	 							
	Kucr				1	J, I			

JCP Throughbolt

Performance

Characteristic values for tension loads, stainless steel A4/HCR

Annex C2

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	M16	M20
Installation safety factor $\gamma_2 = \gamma_{inst}$ [-]						1,0		
Steel failure without lever arm								
Characteristic shear resistance	V _{Rk.s}	[kN]	5	11	17	25	44	69
Factor for ductility	k ₂	[-]	1,0					
Steel failure with lever arm								
Characteristic resistance	M ⁰ _{Rk.s}	[Nm]	9	23	45	78	186	363
Partial safety factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γMs	[-]	1,25				1	,33
Concrete pry-out failure								
Factor k acc. ETAG 001, Annex C or k₃ acc. CEN/TS 1992-4 for h _{ef}	k ₍₃₎	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Factor k acc. ETAG 001, Annex C or k ₃ acc. CEN/TS 1992-4 for h _{ef,red}	k ₍₃₎	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Concrete edge failure								
Effective length of anchor in shear loading for h _{ef}	_f	[mm]	40	44	48	65	82	100
Effective length of anchor in shear loading for h _{ef,red}	I _{f,red}	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Outside diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20

¹⁾ Use restricted to anchorages of indeterminate structural components

Table C4: Characteristic values for shear loads, stainless steel A4/HCR

Anchor Size			M6	M8	M10	M12	M16	M20
Installation safety factor	$\gamma_2 = \gamma_{inst}$	$\gamma_2 = \gamma_{\text{inst}} \qquad [-] \qquad \qquad 1,0$						
Steel failure without lever arm								
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7	12	19	27	50	86
Factor for ductility	k ₂	[-]			1	,0	•	
Steel failure with lever arm								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	10	24	49	85	199	454
Partial safety factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γMs	[-]	1,25					
Concrete pry-out failure								
Factor k acc. ETAG 001, Annex C or k_3 acc. CEN/TS 1992-4 for $h_{\rm cf}$	k ₍₃₎	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Factor k acc. ETAG 001, Annex C or k_3 acc. CEN/TS 1992-4 for $h_{ef,red}$	k ₍₃₎	[-]	1,0 ¹⁾	1,0 ¹⁾	1,0	1,0	2,0	2,0
Concrete edge failure								
Effective length of anchor in shear loading with \mathbf{h}_{ef}	lf	[mm]	40	44	48	65	80	100
Effective length of anchor in shear loading with $\mathbf{h}_{\text{ef},\text{red}}$	I _{f,red}	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78
Outside diameter of anchor	d _{nom}	[mm]	6	8	10	12	16	20

JCP Throughbolt

Annex C3

Anchor size			M6	M8	M10	M12	M16	M20	
Standard anchorage depth									
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8	
Dissistant		[mm]	0,4			0,5			
Displacement	$\delta_{N\infty}$	[mm]	0,7	2,3					
Reduced anchorage depth									
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6	
Displacement	δ _{N0}	[mm]	0,3	0,4					
Displacement	δ _{N∞}	[mm]	0,6			1,8			

Table C6: Displacements under tension loads, stainless steel A4/HCR

Anchor size			M6	M8	M10	M12	M16	M20
Standard anchorage depth								
Tension load	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δ _{N0}	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
	$\delta_{N\infty}$	[mm]			1,8			4,2
Reduced anchorage depth								_
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δ _{N0}	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Displacement	$\delta_{N\infty}$	[mm]			1,3			2,9

Table C7: Displacements under shear loads, steel zinc plated

Anchor size			M6	M8	M10	M12	M16	M20
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δ _{V0}	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	$\delta_{V\infty}$	[mm]	2,4	2,2	2,4	3,9	4,6	6,6

Table C8: Displacements under shear loads, stainless steel A4/HCR

Anchor Size			M6	M8	M10	M12	M16	M20
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Displacement	δ_{V0}	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	$\delta_{V\infty}$	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

JCP Throughbolt	
Performance Displacements	Annex C4